

An experimentally-validated multi-scale materials, process and device modelling & design platform enabling non-expert access to open innovation in the Organic and Large Area Electronics Industry (MUSICODE)

Grand Agreement: 953187

Project Start Date: 01/01/2021

Project Duration: 48 months

Deliverable 3.4

Fabrication and characterization of PPV devices and model assessment

Date: 03-01-2023

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Call DT-NMBP-11-2020 "Open Innovation Platform for Materials Modelling"

Project co-funded by the European Commission within Horizon 2020 Research and Innovation Programme				
Dissemination Level				
PU	Public			
PP	Restricted to other programme participants (including the Commission Service)			
RE	Restricted to a group specified by the consortium (including the Commission Services)			
CO	Confidential, only for members of the consortium (excluding the Commission Services)	х		

Deliverable author(s): S. R. P. Silva, University of Surrey

Contributors: (only the lead contacts during the preparation of this document are identified herein).

Name	Organization
D. I. Kutsarov	USUR
E. Rezaee	USUR
B. Li	USUR
A. C. Vidani	Fluxim
S. Jenatsch	Fluxim

Draft Revisions:

- draft v1.0 submitted to coordinator on 19.12.2022
- draft v2.0 approved by coordinator on 03.01.2023

Copyright

@ Copyright 2021-2024 The MUSICODE Consortium

Consisting of Coordinator:	University of Ioannina (UoI)	Greece
Partners:	Karlsruhe Institute of Technology (KIT)	Germany
	University of Surrey (SURREY)	UK
	Aristotle University of Thessaloniki (AUTh)	Greece
	Czech Technical University in Prague (CVUT)	Czechia
	Fluxim AG (FLUXIM)	Switzerland
	TinniT Technologies GmbH (TINNIT)	Germany
	Granta design LTD (GRANTA)	UK
	Esteco SPA (ESTECO)	Italy
	Organic Electronic Technologies (OET)	Greece
	Apeva SE (APEVA)	Germany
	ANSYS UK (ANSYS)	UK
	AIXTRON (AIXTRON)	Germany

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the MUSICODE Consortium. In addition to such written permission to copy, reproduce, or modify this document in whole or part, an acknowledgment of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

All Rights reserved.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Call DT-NMBP-11-2020 "Open Innovation Platform for Materials Modelling"

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Glossary

AFM	Atomic Force Microscopy
Ag	Silver
Al	Aluminium
AOI	Area of Interest
Са	Calcium
DI	De-ionised water
DIT	Dark-Injection Transient
EOD	Electron Only Devices
ETL	Electron Transport Layer
FF	Fill Factor
HOD	Hole Only Devices
HTL	Hole Transport Layer
IMI	Indium Metal Indium (an ITO alternative)
ITO	Indium Tin Oxide
Jsc	Short Circuit Current
NFA	Non-Fullerene Acceptor
NW	Nano Wire
OE	Opto-Electronic
OLED	Organic Light Emitting Diode
OPV	Organic Photovoltaic
OVPD	Organic Vapor Phase Deposition
PAL	Photoactive Layer
PCE	Power Conversion Efficiency
PET	Polyethylene Terehthalane
PL	Photoluminescense
РТАА	Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine
PPV	Perovskite Photovoltaic
R2R	Roll-To-Rolle
SCLC	Space-Charge-Limited-Current
SE	Spectroscopic Ellipsometry
Voc	Open Circuit Voltage
WP	Work Package

Contents

Ρ	ublishat	le summary	5
1	Intro	oduction	6
	1.1	Objectives of this WP/Task	6
	1.2	Purpose of this document	6
2	Met	hodology	7
	2.1	Fabrication of functional layers and devices via the spin-coating technique	7
	2.2	Fabrication of functional layers and devices via the knife- bar- or slot-die coating technique	8
2	.3 Fl	uxim's FEM software Laoss	10
	2.3.1	Laoss model	10
	2.3.1.1	Geometry import	11
	2.3.1.2	Device area, sheet resistance, and performance	12
3	Resu	Ilts	13
	3.1	Fabrication of PPV devices with non-scalable deposition techniques	13
	3.1.1	Optimization of the device structure	13
	3.1.2	Optimization process of PTAA	14
	3.1.2.1	Study of the PTAA concentration	16
	3.1.2.2	Study of the F4TCNQ concentration in PTAA	17
	3.1.2.3	Studies of the PTAA concentration with 5 wt.% F4TCNQ	19
	3.1.2.4	Further optimization of the fabrication procedure	21
	3.2	Fabrication of PPV devices with scalable deposition techniques	22
	3.2.1	Deposition of thin OE layers via bar coating over large areas	27
	3.2.2	PPV devices with PTAA as a HTL	28
	3.2.3	Addition of DMF to the perovskite precursor	30
	3.2.4	PCE behavior during storage	30
	3.2.5	Simulation and fabrication of mini PPV modules	33
4	Disc	ussion	38
	4.1	Achievements	38
	4.2	Risks	38
	4.3	Next steps	38
5	Con	clusions	39
R	eferenc	es	40

Publishable summary

The contents of this document refer to WP3, Fabrication and characterization of perovskite photovoltaic (PPV) devices and model assessment (M1-24) under the WP3 Model validation by analytical characterization (M1-M36) and in particular Task 3.1. Fabrication of tests OE materials and devices (M1-M30).

WP3 conducts experimental tests and characterization to validate the models of WP2. Specifically, D3.4 sets out that "3D and 3D/2D hybrid perovskite devices will be fabricated in both the regular, i.e., n-i-p and inverted, p-i- n architecture. The device fabrication is planned to be carried out using solution processable spin coating at initial level followed by scaling up via slot die coating technique. These processes will be conducted in controlled environments and the process modelled to build the predictive capability of CAD for PPV materials". In this regard, the specifications for the substrate, cathode, transport layers, the perovskite materials, and the anode were defined in WP 1.1

This report shows the experimental work undertaken so far for D3.4 as part of Task 3.1. Small sized PPV with photoactive areas below 1 cm² were fabricated in section 3.1 by means of the spin-coating deposition technique. To achieve PCEs above 17% special attention was paid to optimize the perovskite device stack. It was shown that to achieve high PCEs, the fabrication conditions and the resulting properties of the PTAA-based hole transport layer needed optimization. Then the optimized device stack was used for the fabrication of PPV devices by means of the scalable deposition technique called "slot-die coating". In particular, the perovskite absorber was fabricated by slot-die coating, whilst the rest of device was still deposited with the spin-coating technique. The study was also published in the *Scientific Reports* journal. In section 3.2 the scalable deposition technique, in section 3.2 the bar coating technique was used to optimize the PPV device stack. The properties of the PTAA layer were studied and novel perovskite inks were developed. PCEs exceeding 17% were achieved. Additionally, the stability of the devices was investigated. Finally, in collaboration with Fluxim the optimal device layout and the resulting performance behavior of large-area PPV modules was simulated. Based on the simulations, PPV modules were fabricated and PCE above 10% were achieved for modules with a physical area of 25cm².